
Master’s Thesis

Case Study in So.ware Tes2ng or So.ware Analy2cs (focus on so.ware quality)

Supervisor: Dietmar Pfahl (dietmar dot pfahl ät ut dot ee)

This is a "placeholder" Master’s Thesis project topic, which needs to be negoCated
individually. If you work in a IT company and you are acCvely engaged in a soHware tesCng
or soHware analyCcs, or if you can convince your hierarchy to put in Cme and resources into
such a project in the near-term, we can make a case study out of it. We will sit down and
formulate concrete hypotheses or quesCons that you invesCgate as part of this project, and
we will compare your approach and results against state-of-the-art pracCces. I am
parCcularly interested in supervising theses topics related to mutaCon tesCng, tesCng of
embedded soHware, tesCng safety-criCcal systems, security tesCng of mobile apps, anlysis of
project repositories to make soHware development processes more efficient and effecCve,
but I welcome other topic areas.

The method applied is a case study. Case studies follow a systemaCc approach as outlined in:
“Guidelines for conducCng and reporCng case study research in soHware engineering” by
Per Runeson and MarCn Höst –
URL: hXp://link.springer.com/arCcle/10.1007%2Fs10664-008-9102-8

Important elements of the thesis are literature study, measurement and interviews with
experts in the target company.

A mandatory pre-requisite for me to act as supervisor is that there exists a co-supervisor
within the case company who is willing to help with the exact scoping of the thesis project
and confirms that the topic is in the interest of the case company to an extend that the
student can work on the thesis project (at least partly) during work Cme.

The following topics are research-related and not available for students who work in
industry with more than 50% of the nominal workload in industry (more details to come
soon):
1. Literature Survey on digital twins for dynamically changing data sets - co-supervised by

one of my PhD students.
2. A tool for generaCng digital data twins using generaCve AI, e.g., based on large language

models like GPT (generaCve pre-trained transformer) - co-supervised by one of my PhD
students.

3. A tool for mapping data collected from an ADS (Automated Driving System) with safety
driver on board to test scenarios in simulaCon-based safety tesCng of ADS. The data used
for the mapping would be collected during a Cme interval t before an (unplanned)
disengagement happened (i.e., the safety driver took over control because he/she
thought a dangerous situaCon emerges that might not be adequately handled by the
ADS) - co-supervised by one of my PhD students.

4. Using Regular Expressions (RegEx) to automaCcally derive applicability constraints for
Metamorphic RelaCons (MR) – for details see below …

Using Regular Expressions (RegEx) to automa2cally derive applicability constraints for
Metamorphic Rela2ons (MR)

Supervisor: Dietmar Pfahl (dietmar dot pfahl at ut dot ee) & Alejandra Duque Torres

According to Wikipedia, “Metamorphic tesCng (MT) is a property-based soHware tesCng
technique, which can be an effecCve approach for addressing the test oracle and, thus,
automaCc test case generaCon problem. A Metamorphic RelaCon (MR) defines for a
SoHware Under Test (SUT) how for a valid input x the output y = SUT(x) must change if x is
modified, i.e., what properCes must apply to y’ = SUT(x’) where x’ results from applying a
specific transformaCon f on x, i.e., x’ = f(x). If for all valid inputs x the resulCng outputs y fulfil
the given MR, then there is no reason to assume the SUT is faulty (assuming the MR is
actually applicable).

The problem with MT is that it is not easy to find a sufficiently large set of applicable MRs to
a specific SUT. Much domain knowledge is needed to handcraH good MRs that can be used
for generaCng a strong test suite. Since it is rarely the case that an MR holds universally for
all valid inputs x, and to have a richer set of applicable MRs, one might define that an MR
must only hold for a subset of all valid inputs (i.e., only for posiCve numbers or for all
numbers but 0).

To overcome these problems, one might try to select suitable MRs from a large set of
empirically known MRs. A first and easy to apply filter for automaCc selecCon of MRs from
this large set is that only those MRs are chosen that syntacCcally match the signature (or
API) of a funcCon or SUT. Once the syntacCcally applicable MRs can be automaCcally applied
to the SUT using a fuzzer. For each applied MR, several observaCons can be made (and
recorded): a) For all inputs x, the corresponding outputs y fulfill the properCes defined by
the MR, or b) For none of the inputs x, the corresponding y fulfill the properCes, or c) for
some x the corresponding y fulfill and for some they don’t fulfill the properCes.

The two extreme cases a) and b) can easily exploited for building regression test suites (i.e.,
aHer sufficient trust has been built into the correctness of the SUT). However, the MRs that
fall under case c) are difficult to reuse, because it is unclear whether the choice of a not yet
tried x’ must produce an output y’ that fulfills or that doesn’t fulfill the property defined by
the MR. In other words, it is difficult to describe the input space T that corresponds to the
parCCon where y’ fulfills the property and what is the input space F that doesn’t.

The idea of this thesis topic is to derive RegEx that would define the two parCCons of the
input space based on the data available from the executed tests using the fuzzer and
violaCon/non-violaCon of the MR informaCon.

In the context of the Regex Golf challenge similar problems have been tackled (see:
hXps://link.springer.com/arCcle/10.1007/s10710-021-09411-x)

The goal of this thesis project is to devise a method and develop a supporCng tool that helps
testers to semi-automaCcally derive regression test suites for a given SUT starCng out from a
set of MRs and using a fuzzer (see: hXps://www.fuzzingbook.org). The resulCng method and
tool must be evaluated.

References:
• de Almeida Farzat, A., de Oliveira Barros, M. AutomaCc generaCon of regular expressions

for the Regex Golf challenge using a local search algorithm. Genet Program Evolvable
Mach 23, 105–131 (2022). hXps://doi.org/10.1007/s10710-021-09411-x

• T.Y. Chen; S.C. Cheung; S.M. Yiu (1998), "Metamorphic tesCng: A new approach for
generaCng next test cases", Technical Report HKUST-CS98-01 (PDF), Department of
Computer Science, The Hong Kong University of Science and Technology, Hong
Kong, arXiv:2002.12543.

Bachelor’s Thesis

Lab Package Development & Evalua2on for the Course 'So.ware Tes2ng' (LTAT.05.006)

Supervisor: Dietmar Pfahl (dietmar dot pfahl at ut dot ee)

The course SoHware TesCng
(hXps://courses.cs.ut.ee/2023/SWT2023/spring/Main/HomePage - LTAT.05.006]]) has a
series of pracCce sessions
(hXps://courses.cs.ut.ee/2023/SWT2023/spring/Main/LabsPracCceSessions)
in which 2nd and 3rd year BSc students learn a specific test technique. We would like to
improve exisCng labs and add new labs.

This topic is intended for students who have already taken this soHware tesCng course and
who feel that they can contribute to improving it and by the same token complete their
Bachelor's project. The scope of the project can be negoCated with the supervisor to fit the
size of a Bachelors project.

The tasks to do for this project are as follows:
* SelecCon of a test-related topic for which a lab package should be developed (see list
below)
* Development of the learning scenario (i.e., what shall students learn, what will they do in
the lab, what results shall they produce, etc.)
* Development of the materials for the students to use
* Development of example soluCons (for the lab supervisors)
* Development of a grading scheme
* EvaluaCon of the lab package

Topics for which lab packages could be developed (list can be extended based on student
suggesCons / one bullet point corresponds to one BSc thesis):
* AutomaCc Test Case GeneraCon (with [[hXps://www.evosuite.org|EvoSuite]])
* Model-Based TesCng (with [[hXps://graphwalker.github.io|GraphWalker]])
* Fuzzing ([[hXps://www.fuzzingbook.org|Book]],
[[hXps://en.wikipedia.org/wiki/American_fuzzy_lop_(fuzzer)|AFL]])
* Metamorphic TesCng (hXps://en.wikipedia.org/wiki/Metamorphic_tesCng)
* Mocking ([[hXps://site.mockito.org|Mockito]])
* Symbolic TesCng (with [[hXps://github.com/javapathfinder/jpf-core|JPF]])
* Other topics that you find interesCng and would like to discuss with me regarding their
suitability

Using Regular Expressions (RegEx) to automa2cally derive applicability constraints for
Metamorphic Rela2ons (MR)

Supervisor: Dietmar Pfahl (dietmar dot pfahl at ut dot ee) & Alejandra Duque Torres

According to Wikipedia, “Metamorphic tesCng (MT) is a property-based soHware tesCng
technique, which can be an effecCve approach for addressing the test oracle and, thus,
automaCc test case generaCon problem. A Metamorphic RelaCon (MR) defines for a
SoHware Under Test (SUT) how for a valid input x the output y = SUT(x) must change if x is
modified, i.e., what properCes must apply to y’ = SUT(x’) where x’ results from applying a
specific transformaCon f on x, i.e., x’ = f(x). If for all valid inputs x the resulCng outputs y fulfil
the given MR, then there is no reason to assume the SUT is faulty (assuming the MR is
actually applicable).

The problem with MT is that it is not easy to find a sufficiently large set of applicable MRs to
a specific SUT. Much domain knowledge is needed to handcraH good MRs that can be used
for generaCng a strong test suite. Since it is rarely the case that an MR holds universally for
all valid inputs x, and to have a richer set of applicable MRs, one might define that an MR
must only hold for a subset of all valid inputs (i.e., only for posiCve numbers or for all
numbers but 0).

To overcome these problems, one might try to select suitable MRs from a large set of
empirically known MRs. A first and easy to apply filter for automaCc selecCon of MRs from
this large set is that only those MRs are chosen that syntacCcally match the signature (or
API) of a funcCon or SUT. Once the syntacCcally applicable MRs can be automaCcally applied
to the SUT using a fuzzer. For each applied MR, several observaCons can be made (and
recorded): a) For all inputs x, the corresponding outputs y fulfill the properCes defined by
the MR, or b) For none of the inputs x, the corresponding y fulfill the properCes, or c) for
some x the corresponding y fulfill and for some they don’t fulfill the properCes.

The two extreme cases a) and b) can easily exploited for building regression test suites (i.e.,
aHer sufficient trust has been built into the correctness of the SUT). However, the MRs that
fall under case c) are difficult to reuse, because it is unclear whether the choice of a not yet
tried x’ must produce an output y’ that fulfills or that doesn’t fulfill the property defined by
the MR. In other words, it is difficult to describe the input space T that corresponds to the
parCCon where y’ fulfills the property and what is the input space F that doesn’t.

The idea of this thesis topic is to derive RegEx that would define the two parCCons of the
input space based on the data available from the executed tests using the fuzzer and
violaCon/non-violaCon of the MR informaCon.

References:
• T.Y. Chen; S.C. Cheung; S.M. Yiu (1998), "Metamorphic tesCng: A new approach for

generaCng next test cases", Technical Report HKUST-CS98-01 (PDF), Department of
Computer Science, The Hong Kong University of Science and Technology, Hong
Kong, arXiv:2002.12543.
