
UNIVERSITY OF TARTU

Faculty of Mathematics and Computer Science

Institute of Computer Science

Specialty of Information Technology

Oliver Leisalu

Comparative Evaluation of Two PHP Persistence Frameworks

Bachelor's Thesis (4AP)

Supervisor: prof. Marlon Dumas

Author: .. “....” June 2009

Supervisor: .. “....” June 2009

Allow to Defence

Professor: .. “....” June 2009

TARTU 2009

Table of Contents
Introduction...3

Persistence Frameworks..4

Table Data Gateway..5
Row Data Gateway...5
Active Record...5
Hibernate...6
PHP Frameworks..8

EzPDO..8
Propel...9
JDao ...11
Doctrine..11
DomAr..14

Comparative Evaluation..17

Functionality Comparison...17
Application Complexity..21

Sakila Database..21
Implementation Notes..22
Usability Comparison...22

Performance Comparison..23
The Jounneau Benchmark..24
Benchmark Results...25

Conclusion...28

References...29

2

Introduction

Object-Relational Mapping (ORM) frameworks allow software developers to

manipulate objects that persist in relational tables. In the context of the PHP language, a

number of ORM frameworks exist. These frameworks strike various trade-offs between

richness of functionality, usability and performance. However, little work has been done

previously to compare existing PHP persistence frameworks. This thesis compares two

such frameworks, namely Doctrine and DomAR in terms of their functionality, usability

and performance. Usability and functionality are assessed by means of an action

research study in which two sample applications from different domains were created

separately using the two frameworks, and the two implementation efforts were

compared in terms of several factors, including programming effort and number of lines

of code. Meanwhile, the performance of the two frameworks was compared using a

small benchmark covering three common types of operations: traversals, queries and

modifications.

3

Persistence Frameworks

Most enterprise applications use relational databases for data persistence, but very often

they are programmed using an object-oriented programming language in which data is

structured as objects. This difference in representation approaches leads to a

phenomenon known as impedance mismatch. Impedance mismatch refers to the

differences between Object-oriented technology and relational technology. Object-

oriented technology relies on objects that have data and behavior. The objects have

identity and are traversed using direct access whereas relational databases systems

(RDBS) store data into tables. That data is manipulated and accessed using Data

Manipulation Language (DML) such as SQL. Furthermore in RDBS tables have

primary key and data is related with foreign keys and they do not have equivalent

inheritance logic as object's have.

A representative example of impedance mismatch is when storing a string into varchar

type into database. String in many programming languages can be as long as wanted,

but data type varchar in database can be only 256 characters. In application everything

may work when using longer values, but when storing that value into database an error

will occur.

One approach to solve the impedance mismatch is to introduce an abstract layer, called

a Persistence layer. The persistence layer lies between RDBS and object model of the

application. This way the database is fully encapsulated from application and most

requests to database are done through a persistence layer. That layer validates all data

that will be inserted into database.

A popular approach used by persistence framework nowadays is called object-relational

mapping (ORM). An ORM framework converts and transparently moves data from the

form it is managed in main memory (objects) to a persistent relational data store and

vice-versa. In simpler terms, the ORM tool helps to manage the database access and the

mapping between the database and objects. There are three patterns that can be used

4

when creating an ORM tool - Table data gateway, Row data gateway and Active record.

All these design patterns were named by Martin Fowler in his book Patterns of

Enterprise Application Architecture [3].

Table Data Gateway
“Table data gateway holds all the SQL for accessing a single table or view: selects,

inserts, updates and deletes. Other code calls its methods for all interaction with the

database.” as explained by Martin Fowler [3]. The Table data gateway pattern has a very

simple interface which has several methods for create, read, update, delete (CRUD)

actions. Each of these methods map input into an SQL call and executes it. Usually one

class is made for each table.

Row Data Gateway
Row data gateway is an object that acts as a single row in a database. “It gives you

objects that look exactly like the record in your record structure but can be accessed

with the regular mechanisms of your programming language. All details of data source

access are hidden behind this interface.” as mentioner by Fowler [3].

Active Record
“Active record is an approach to access data in a database. A database table or view is

wrapped into a class, thus an object instance is tied to a single row in the table. After

creation of an object, a new row is added to the table upon save. Any object loaded gets

its information from the database; when an object is updated, the corresponding row in

the table is also updated. The wrapper class implements “accessor” methods or

properties for each column in the table or view.” [3]. Active record is very similar to

Row data gateway as they both contain database access. The main difference with

respect to row data gateway is that active record also contains domain logic.

A simple example of how the active records work is given in the code snippet below.

This code snippet shows how to create an object, assign values to it and insert it into the

database without writing any SQL.

5

$author = new Author();
$author->name = 'John Smith';
$author->phone = +37512345678;

$book = new Book();
$book->title = 'Persistence frameworks';
$author->books[] = $book;

$author->save();

In this example, we create an author object, assign name John Smith and phone number

+37512345678 to it. Then we create a book object titled “Persistence frameworks”. We

bind book and author together simulating a relationship where author has written that

book. By calling save method we insert a book and an author row into database.

$author = Author::load((int)ID);
$author = Author::find('John Smith');
$books = $author->books;

To load the author we can use static method called “load” that takes ID as an argument.

This method returns an Author object or NULL, if row with that ID does not exist. Then

we use a static method called “find”. This method finds author by name. It also returns

Author object or NULL. When we have author loaded we can go through his books by

using field “books”.

$author->delete();

Deleting can be done calling method called “delete” to Author object. This will invoke

DELETE query to database for that Author. Depending on relationship type books may

be deleted (this is called composition) or left with out author (called aggregation).

Hibernate
Hibernate is a very popular open source ORM library for the Java language. Hibernate's

main feature is mapping from Java classes and data types to database tables and types. It

provides data query (Hibernate language query, HQL) and retrieval facilities. Developer

is relieved from manual data to object conversion and it keeps application portable to all

supported SQL databases. A sample of hibernate XML mapping language is given

below.

6

<hibernate-mapping>
 <class name="example.model.Author" table="authors">
 <id name="id" column="authorId">
 <generator class="native"/>
 </id>
 <property name="name"/>
 <property name="phone"/>
 <set name="books" inverse="true" table="books">
 <key column="authorId"/>
 <many-to-one column="author"
 class=" example.model.Book"/>
 </set>
 </class>
</hibernate-mapping>

In this example, we have Author described in XML. Author has properties named id,

name, phone and books. Author to books is a one-to-many relationship meaning that

each author has many books, but single book can have only one author.

A code snippet for simple Create-read-update-delete (CRUD) operations in Hibernate is

given below:

SessionFactory sessFact =
HibernateUril.getSessionFactory();
Session sess = sessFact.getCurrentSession();
org.hibernate.Transaction tr = sess.beginTransaction();

Author author = new Author();
author = new Author();
author->setName('John Smith');
author->setPhone('37512345678');

Book book = new Book();
book->setTitle('Persistence frameworks');
author->books[] = $book;

sess.save(author);
tr.commit();
sessFact.close();

Hibernate uses a session factory that creates a session object and transaction object that

will be used to commit queries. The remaining code is similar to the example introduced

in section 'Active record' with the only difference that the Author object does not have

save method, but Session object has.

In Hibernate, data loading is done by means of a session object created in previous

7

example. Session class has method named “load” which takes ID as an argument and

returns Author object from database.

Author author = (Author)sess.load(Author.class, (int)ID
);

Deleting also relies on a session object. The Session class has a method named “delete”

which takes object as argument. This object is deleted from database.

sess.delete(author);

PHP Frameworks

While Java has had persistence tools from 1999, PHP is quite new to the world of

object-relation mapping. PHP introduced a powerful object oriented programming

(OOP) structure in PHP 5.0 at the end of 2003, which created possibility to start using

ORM tools. One of the first well-known ORM tool for PHP was Propel. The project

begun in August 2003, but it was difficult to use and did not become very popular. In

2006, the Doctrine project was started and it is currently the most popular ORM tool in

PHP world.

Below we provide an overview of some PHP persistence frameworks.

EzPDO

EzPDO is written for PHP 5.2 and its main goal was to design a lightweight and easy-

to-use persistence solution for PHP. EzPDO follows active record pattern. It is a first

project that introduced annotations in PHP ORM tools.

EzPDO should only be used with smaller projects as it doesn't give any functionality for

more complex applications – e.g. data validation. EzPDO does not require any SQL

knowledge to be used. In other words, the framework hides a lot to the programmer and

makes many assumptions about the underlying database structure. Hence, the database

design cannot be optimized much when using this framework.

A known problem with database design which has a strong impact on object-relation

mappings is that of handling N:M relations. EzPDO stores two rows into database for

binding two objects, but it should insert only one. It should be noted that EzPDO is only

suitable for greenfield projects since the framework forces a particular database schema,

so it is not easy to retrofit existing database to work with this framework. Another

8

disadvantage is that the development of EzPDO has slowed down since the last patch

was released in March 2007 so the viability of the project in the long-term is

questionable.

Propel

Propel is the first ORM tool for PHP 5 and is based on Apache Torque which is an ORM

solution for the Java language. It is an open source library. It allows accessing database

using a set of objects and provides an API for storing and retrieving data. Propel allows

developer to work with database in the same way as working with other classes and

objects.

It should be noticed that Propel is not an active record implementation but a row data

gateway and table data gateway implementation.

Propel is a set of two tools: a generator and a runtime framework. The generator first

builds PHP classes based on XML schema describing database. These classes can be

used to interact with data model. Runtime framework allows using generated classes in

PHP scripts to transparently handle writing and reading from database.

Propel depends on three libraries that are required to use it: Phing, Creole and

Pear::Log. This is a disadvantage for Propel, as most of the competing frameworks do

not need any external libraries.

The following XML code snippet shows the generator directions to create classes:

<database name="sample" defaultIdMethod="native">
 <table name="book">
 <column name="id" type="integer" required="true"
 primaryKey="true" autoIncrement="true"/>
 <column name="title" type="varchar" size="255"
 required="true" />
 </table>
<table name="author">
 <column name="id" type="integer" required="true"
 primaryKey="true" autoIncrement="true"/>
 <column name="name" type="varchar" size="128"
 required="true"/>
 <column name="phone" type="varchar" size="128"
 required="true"/>

9

</table>
</database>

The following code snippet shows how to code simple CRUD operations in Propel.

$author = new Author();
$author->setName('John Smith');
$author->setPhone(37512345678);

$book = new Book();
$book->setTitle('Persistence frameworks');
$book->setAuthor($author);

$author->save();

// LOAD
$author = AuthorBeer::retrieveByPK((int)ID);

// loading author book
$c = new Criteria();
$c->add(BookBeer::author, array((int)ID),
Criteria::EQUAL);
$books= BookBeer::doSelectJoinAuthor($c);

// DELETE
AuthorBeer::doDelete($author);

Simple CRUD operations are mostly the same as in the active record sample. The main

difference is its query language for retrieving data by different criteria. For that a

Criteria object is needed and to it different restrictions are added. In the above example,

we want to find author books. This is done by creating a join query using a BookBeer

class.

Propel's main disadvantage is that its documentation is not well maintained. There are

basic samples but a developer cannot get help if he starts working with more complex

scenarios. Another related problem is that the Propel user community is small as

evidenced by the low number of updates in the Propel subversion code repository and

the low level of activity in the related forums.

JDao
JDao is an active record implementation that is part of the Jelix framework. It is part of

a bigger library and cannot be used as a stand-alone tool. This is also noted in the

10

documentation; the reason is that it has too many dependencies. JDao follows a table

data gateway and a row data gateway pattern. Data mapping is done using XML. From

that XML classes are automatically generated that can be used on runtime. JDao is

mostly used in France and part of its source code and documentation is in French. JDao

could become more appealing to the international community if its community of

developers and users adopted English as their communication language.

Doctrine
Doctrine is an object relation mapper for PHP. It was written by Konsta Vesterinen in

2006 and has evolved a lot since early releases. Since Doctrine is an open source project

- many people have joined and contributed to its development. Currently there is a team

of about four active developers around Doctrine, and a few other less active developers.

The first official version was released in September 1 2008.

Doctrine follows the active record pattern and sits on top of a database abstraction layer

called PDO that allows easy access to all databases, such as very popular MySql and

PostgreSql. It has been officially integrated into many PHP frameworks – Symfony is

one of the most known.

Doctrine is very easy to use as it requires almost no configuration when a new project is

started. It can generate classes from an existing database and the programmer can

specify relations and add custom functionality to created classes. A project can also be

started in the reverse direction as well, that is by first creating classes, specifying how to

persist these classes, and then generating the database schema.

We have chosen to include Doctrine in our comparative study because it has very good

technical manuals and tutorials and a very active community of users.

11

Below, we provide some code samples of Doctrine. First we define a couple of classes,

and then we show code snippets to illustrate the use of the framework.

Author Class:

class Author extends Doctrine_Record {
 public function setTableDefinition() {
 $this->hasColumn('id', 'integer',11, array(
 'notnull' => true,
 'primary' => true,
 'unsigned' > true,
 'autoincrement' => true));
 $this->hasColumn('name', 'string',200, array(
 'notnull' => true));
 $this->hasColumn('phone', 'int',11, array(

 'notnull' => true));
 }
 public function setUp() {
 $this->hasMany('Book', array(
 'local' => 'id',
 'foreign' => 'author'));
 }
}

Book Class:

class Book extends Doctrine_Record {
 public function setTableDefinition() {
 // primary key column is added automatically, if not
set
 $this->hasColumn('name', 'string',200, array(
 'notnull' => true));
 $this->hasColumn('author', 'int',11, array(

 'notnull' => true));
 }
 public function setUp() {
 $this->hasOne('Book', array(
 'local' => 'author',
 'foreign' => 'id'));
 }
}

12

Usage Samples:
In the following code snippet, first an Author object is created. Name and phone number

are set for the author. Then Book object is created and its title is set. Subsequently we

relate author and book to each other and save them to database by calling “save”

method for author. Both Author and Book are saved.

// create new author
$author = new Author();
$author->name = 'John Smith';
$author->phone = +37512345678;

// create one book for author
$book = new Book();
$book->title = 'Persistence frameworks';
$author->books[0] = $book;

// save author and book
$author->save(); // lets say our author ID is 1

Loading needs AuthorTable object. That object can create queries to database. Next,

“find” method is called, which takes object ID as an argument and returns Author

object. Then author name, number of books he has written and titles of these books are

outputted.

$table = Doctrine::getTable('Author');
$author = $table->find(1);
echo 'Author '.$author->name.' has written
'.count($author->books).' book: ';
foreach($author->books as $book) {
 echo '”'.$book->title . '”';
}
// would output:
// Author John Smith has written 1 book: “Persistence
frameworks”

Deleting both author and book is done simply by calling the delete method on an Author

object.

$author->delete();

DomAr
The DomAr project started in 2007 and is written by the author of this thesis, Oliver

Leisalu. Currently it is not an open-source project so it is not available for public, but in

near future it hopefully will be. The framework has been used to code a number of

applications in commercial projects in which the author has been involved.

13

DomAR follows active record pattern. Its main purpose is to give a quick and easy

solution for creating application model that can modify and validate complex data

model. It has a query language called DomSql which supports object queries, data

queries that return data as arrays for faster performance and writing your own SQL

sentences for complex requests. Annotations are used for data mapping. Below we

provide code snippets equivalent to those we provided above for the Doctrine

framework.

Class Definitions

Author Class:

/**
* @orm tablename authors
*/
Class Author exnteds DomArObject {
 /**
 * @orm char(50)
 */
 public $name;
 /**
 * @orm int(11)
 */
 public $phone;
 /**
 * @orm owns many Book inverse author
 */
 public $books;
}

Book Class:
/**
* @orm tablename books
*/
Class Book exnteds DomArObject {
 /**
 * @orm char(50)
 */
 public $title;

14

 /**
 * @orm has parent Author inverse books
 */
 public $author;
}

Usage Samples:
In the following code snipper, an Author object is created. Its name and phone number

are set. Then Book object is created and its title set. After that Author and Book are

binded together and “save” is called for Author object which saves both Author and

Book into database.

// create new author
$author = new Author();
$author->name = 'John Smith';
$author->phone = +37512345678;

// create one book for author
$book = new Book();
$book->title = 'Persistence frameworks';
$author->books[] = $book;

// save author and book
$author->save(); // lets say our author ID is 1

An Author object is loaded from database by means of a static method called “load”.

Then author name and number of books he has written is outputted. After that all his

book titles are printed.

$author = Author::load(1);
echo 'Author '.$author->name.' has written '.$author-
>books->count().' books: ';
foreach($author->books as $book) {
 echo '”'.$book->title . '”';
}

// would output:
// Author John Smith has written 1 book: “Persistence
frameworks”

Deleting is done by calling “delete” method to Author object. Both author and his books

are deleted.

$author->delete();

15

Comparative Evaluation

Functionality Comparison
Different classes of application require different sets of features from an ORM

framework. In some applications, the data structures manipulated are fairly simple (e.g.

simple one-way relationships between classes) . Other applications manipulate more

complex data structures including bi-directional relations. Similarly, in some

applications, full support for transactions is crucial, while smaller applications may not

require it. Below, we list a number of features that one may expect to find in an ORM

framework. The list includes features related to the data structures, support for integrity

(transactions) and optimization (e.g. memory caching), and additional features such as

event listeners or views. Finally, other features are non-functional (e.g. documentation

and level of activity of the developer's community). The list is not intended to be

comprehensive, but merely to provide a starting point covering common features.

● Relationships: does the framework supports the persistence of one-way

relationships (references) between classes?

● Bi-directional relationships: does the framework supports the persistence of two-

way relationships (references) between classes, and maintaining the referential

integrity between these two classes?

● Hierarchical data: Does the framework include tools for working with

hierarchical data?

● Column aggregation inheritance – With column aggregation inheritance there

can be objects from more than one class in a single table. Does the framework

support handling this?

● Transactions – Does the framework support transactions?

● Dirty checking – Does the framework monitor and handle dirty objects? Object

is called dirty when some of its property values are changed.

● Optimization – Does the framework have documentation about how to optimize

data model for better performance?

● Memcache support – support for caching objects in memory so they don't have

16

to be loaded from database for each session.

● Support for hooks / event listeners – Does the framework support event listeners

like before save, before update, after delete, etc.

● Support for views – Does the framework support handling database views?

● Automatic generation of schema – Can the database schema generated

automatically from object model?

● Automatic generation of model – Can the model be generated automatically

from database schema?

● Annotations – Can the data mapping be done using annotations?

● Data mapping language – Is there any data mapping languages besides default

mapping? (Default for DomAr is annotations and PHP code for Doctrine)

● Supported databases – What databases are supported?

● Extendable - is there documentation about extending the framework? Writing

custom property/column handlers etc...

● Query language – Is there any documented query language?

● Community – author's assessment about the community size and activeness.

● Model behaviours

○ Sluggable – automatic generation of nice search engine friendly ID used in

URL-s. (Example: Article title is “Article about ORM” then its slug would

be article-about-orm)

○ Timestampable – automatic timetracking of updates.

○ Versionable – stores and maintains versions of an object. Allows reverting

back to older versions.

○ Searchable – automatically manages fulltext search index creation and

management.

The following table provides a side-by-side comparison of Doctrine and DomAR in

terms of the above set of features.

Criteria Doctrine DomAr
Relationships Yes Yes
Bi-directional relationships Yes Yes
Hierarchical data (tree-structured) Yes No. Loading from database

cannot be done efficiently.
Transactions Yes Yes

17

Optimization Yes Yes
Column aggregation inheritance Yes Yes
Dirty checking Yes Yes
Support for hooks / event listeners Yes Yes
Support for views No No
Automatic generation of schema Yes Yes
Automatic generation of model Yes No
Annotations No (But will be in

Doctrine 2.0, which

is not yet available.)

Yes

Data mapping language Yes No
Supported databases All that PDO

supports

Mysql, PostgreSql

Extendable, documented “how

to”.

No Yes

Query language Yes (DQL) Yes (DomSql)
Age 3 years from project

start. Version 1.0 has

been available for

one year

2 years from project start.

Final version 2.0 has been

available for one year.

Version 1.0 2.0
Community Large, Active None
Memcache support Yes Yes
Useful model behaviours:

Sluggable

Timestampable

Versionable

Searchable

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Package size (Only main libraries,

no documentation.)

2.22MB 382KB

Files in package 343 72

Based on the above table, we can conclude that Doctrine has more features. The main

advantage over DomAr is Doctrine's comprehensive documentation, support for PDO

and a very active community. Support for tree-structured data is very useful for projects

18

that need it. Both frameworks can create database schema from model, but Doctrine can

also create model from existing database. Advantages for DomAr are its small size and

available documentation of how to extend it. Annotations are also a plus since this

usually feels more natural for programmers. It should be noted that the next version of

Doctrine also supports annotations.

19

Application Complexity
To test application complexity the author chose a pre-existing database and built a

working object model on top of it. The database chosen is called Sakila. It is a sample

database that was originally build to highlight the features of MySql relational database

system. The Sakila database provides a good testbed for an ORM tool as it uses many of

the features that mainstream database systems have.

Sakila Database
The Sakila database was developed by a former Mysql AB documentation team member

Mike Hillyer. It is intended to provide a standard schema that could be used in books,

articles, samples and so forth. It also highlights the latest features of MySql. Sakila

database is designed to represent a DVD rental store.

The below class diagram illustrates the model structure that was created for DomAr and

Doctrine. The model structure for both implementations was the same.

20

Implementation Notes
In the beginning of the implementation, there were some problems with the DomAr

solution. DomAr does not allow defining custom primary key property. It only accepts

primary key property named as “id”, but Sakila database had primary key fields named

as film_id, actor_id, etc. To solve this issue for DomAr, the database schema had to be

modified.

There were also problems with some data types. There was no support for Year and

Timestamp data types. In model definition these were replaced with similar types.

DomAr has a very easy way to handle many-to-many relationships. Unfortunately this

“easy” approach imposes the relational table to have a strict structure with two fields

named childId and parentId. The Sakila database field names were different. An

alternative solution could be to create an association class that captures an N:M

relationship by means of N:1 and 1:N relationships. This solution is also promoted by

Doctrine. The author decided to use the second option since Doctrine also needed the

same approach.

Both of the ORM solutions did not support views, so these were not created. Of course,

the views can always be manually added to the relational database, but they remain

outside the scope of the ORM framework.

Usability Comparison
Per the author's assessment, the complexity of coding the sample application in the

Doctrine and in DomAR was comparable. In the subjective assessment of the author,

DomAr annotations are more intuitive to use than the Doctrine mapping language. The

annotations syntax is very simple and easy to remember. On the other hand DomAr had

problems with database design (id columns and some data types were not supported)

requiring modifications to the database. So for databases that already exist, it might be

better to use Doctrine, especially since it can generate a model automatically from an

existing database.

DomAr had a bit more lines of code (mostly because of three line annotations), but the

difference was not significant. For both implementations there were no seemingly

unnecessary lines.

It also should be noted that DomAr followed the active record pattern more closely, as it

21

had find and query methods within model class. Doctrine on the other hand had them in

a Table class, which matches Table data gateway pattern. Doctrine solution is said to be

better for testing.

One of the problems that was found during Doctrine testing was that if the same row

was loaded from the database twice, Doctrine gave different instances of that object.

This is an unexpected occurrence and might cause problems in some applications.

DomAr did not have that problem and properly returned same instance. (It actually did

not make the second query to database, instead used object cache.)

Performance Comparison
The problem of evaluating the performance of ORM frameworks is related to that of

evaluating the performance of Object Database Management Systems (ODBMS).

ODBMS arose during the late 80's and early 90's when object-oriented programming

started to gain in popularity and the need to deal with the impedance mismatch between

object and relational models became a problem of practical significance. In ODBMS,

objects are stored and manipulated as first-class citizens and association traversal was

the basic querying operation (as opposed to joins as in relational databases). One of the

problems of ODBMS however was their poor performance relative to established

relational database technology. Accordingly, the need to evaluate and optimize the

performance of ODBMS became a pressing problem.

In order to evaluate the performance of ODBMS, a number of benchmarks were

created: HyperModel, OO1 and OO7. The OO1 was intended to study the performance

of engineering applications. The HyperModel approach was based on earlier versions of

the OO1 benchmark. It used a more complex model with more complex relationships

and wider variety of operations. The OO7 benchmark was based on both of these

benchmarking efforts. It includes queries to evaluate the performance of associative

operations, traversals, updates on simple and complex object types. While the OO7

benchmark was originally designed to assess the performance of ODBMS, but it has

also been adapted to evaluate the performance of Java ORM frameworks, particularly

Hibenate [10].

Unfortunately none of these benchmarks have been realized for PHP. Hopefully this will

change soon as there are already many ORM tools available for PHP, but no

standardized benchmarks currently exist that would help to choose between them. Since

22

creating that kind of benchmark is very complex undertaking it will not be done as part

of this project but is a possible extension to it. Accordingly, in this work we use a small

benchmark introduced by L. Jounneau in an online blog post [11].

The Jounneau Benchmark
The Jounneau benchmark is a small-sized benchmark originally designed to compare

four PHP ORM tools: JDao from Jelix framework, Doctrine, Propel and phpMyObject.

This benchmark tests the speed of selecting records from database. For analysis, the

author added DomAr to that benchmark and ran these tests on our computer.

Model structure class diagram for Jounneau benchmark tests.

The database had to be modified for DomAr since it does not support relationships with

custom keys. Original tests table “departement” had field called “code” as primary key,

but DomAr did not support that and new column was added called “id”. For testing the

author also updated Doctrine version to the latest 1.1. Previously a beta version was

used.

The Jounneau benchmark consists of 12 tests listed below:

N
r

Test name Description

1 Little select Simple select query is used to retrieve 20 city rows
2 Little complex select 20 cities and their regions are loaded
3 Medium select All 96 departments are retrieved.
4 Big select 1000 cities are retrieved.
5 Big complex select 1000 cities are retrieved with their regions.
6 Huge select 10000 cities are retrieved.
7 Stress little select Same query is used as in little select but is ran for

100 times.
8 Stress little complex select Same as previous but is ran for 100 times.

23

9 Stress medium select Same as previous but is ran for 100 times.
10 Stress many individual

record
A single record is loaded from database for 1000
times.

11 Stress many individual
complex record

A single record is loaded from database for 100
times with its region.

12 Stress select with criteria 28 cities are loaded from database that match criteria
id<200 and postcode LIKE %50

Per author's assessment, the Jounneau benchmark has some limitations. It focuses on

select queries and does not have insertions, updates nor deletes. There is only one

relationship type (1:N) used and the data types are very simple. Some of the tests does

not show much useful information. If tests are run on single machine there is no

difference if the query is called once or 100 times. Stress tests should be done by

running all queries are run coincidently. Memory usage should also be tested.

Benchmark Results
Tests where run on a 2.2Ghz computer with 2GB RAM. Apache version was 2.2.8, PHP

version 5.2.8 and MySql version 5.0.51. Operating system was Windows XP with

service pack 3. Each test was run 10 times and average results were calculated.

Test with numbers 2, 5 and 8 were not working with Doctrine because of a SQL syntax

error. This seemed to be a bug in Doctrine, as the code used was the same as introduced

in the manual. This bug was also reported in [11].

The results of running the Jounneau benchmark using DomAR and Doctribe are given

in the following tables and graphs:

Nr Test name DomAr
(seconds)

Doctrine (seconds)

1 Little select 0.01141 0.0323
2 Little complex select 0.01517 n/a
3 Medium select 0.01567 0.0438
4 Big select 0.07357 0.2691
5 Big complex select 0.10463 n/a
6 Huge select 0.63003 9.4332
7 Stress little select 0.07593 0.5081
8 Stress little complex select 0.10174 n/a
9 Stress medium select 0.63619 1.5679

24

10 Stress many individual record 0.16414 1.8962
11 Stress many individual complex

record
0.34114 2.11713

12 Stress select with criteria 1.92202 8.86873
Test results table [a]

Test results bar chart. [b]

Percent stacked bar diagram of test results. [c] Note: tests #2, #5, and #8 did not return

results for Doctrine, so the percent results for those tests are not relevant.

25

1

2

3

4

5

6

7

8

9

10

11

12

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
DomAr (seconds)
Doctrine (seconds) Time in seconds

Te
st

1

2

3

4

5

6

7

8

9

10

11

12

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Doctrine (seconds)
DomAr (seconds)

Main select queries line chart. [d]

Per the test results, DomAr appears to be faster than Doctrine by a factor of at least 2.5.

Chart [d] shows that Doctrine's execution time grows more when selecting more rows

from database. This means that creating record objects costs more in Doctrine than in

DomAr in terms of time. In test #1 (Little select) Doctrine is 3 times slower than

DomAr, but in test #6 (Huge select) it is 15 times slower.

The author was also interested in memory usage, so this line was added to the end of

each test:

echo memory_get_usage(true)/1024;

This shows how much memory is used by a PHP script in KB. For test #6 DomAr used

14592KB and Doctrine used 28928KB. We can see that Doctrine uses about twice as

much memory as DomAr.

26

Little select Medium select Big select Huge select
0.01

0.10

1.00

10.00

0.01
0.02

0.07

0.63

0.03
0.04

0.27

9.43

DomAr
Doctrine

Conclusion

Persistence frameworks are tools that can move data from their most natural form to a

more permanent data store. They are meant to address the impedance mismatch between

object-oriented programming languages and relational database systems. The most

common patterns used by these frameworks are table data gateway, row data gateway

and active record.

There are many ORM tools for PHP, but most of them are in early stages of

development or development has stalled. Currently the most comprehensive publicly

available ORM tool for PHP is Doctrine. DomAr is hopefully the next runner-up with

its own pros and cons. Doctrine's main arguments against DomAr are its richness of

functionality and the size of its community, but as we have seen here, it has a rather low

performance when compared with DomAr. DomAr's main disadvantage is that it forces

a stricter database design and its lack of functionality in some areas.

The benchmark test results of Doctrine and DomAr may be biased because of the

characteristics of the Jounneau benchmark. As explained in the paper, this benchmark

does not include updates and it focuses on select queries. A possible future extension of

this work can be repeating the experiments with a more complex benchmark (OO7). It

would also be desirable to include other PHP frameworks (e.g. JDao) in the benchmark

in order to gain a deeper understanding of the tradeoffs between functionality, usability

and performance in the field of PHP ORM frameworks.

27

References

[1] Yasser El-Manzalawy, Accessing data through persistence frameworks, 2005. Article

at http://www.developer.com/db/article.php/3355151

[2] Object-relational impedance mismatch. Wikipedia article at

http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

[3] Martin Fowler, David Rice, Matthew Foemmel, Edward Hieatt, Robert Mee, Randy

Staffort, Patterns of Enterprise Application Architecture. Addison-Wesley Professional,

2002

[4] Red Hat Inc. Hibernate reference manual. Http://hibernate.org

[5] DomAr samples. Tutorials and samples about DomAr

http://inditel.ee/CODE/samples/

[6] Doctrine project homepage at http://www.doctrine-project.org/

[7] Doctrine. Wikipedia article about Doctrine at

http://en.wikipedia.org/wiki/Doctrine_(PHP)

[8] Propel project homepage at http://propel.phpdb.org/trac/

[9] EzPdo project homepage at http://www.ezpdo.net/

[10] Pieter Van Zyl, Derrick G.Kourie, Andrew Boake. Comparing performance of

Object databases and ORM tools. In Proceedings of the SAICSIT Conference, Cape

Province, South Africa, October 2006. ACM Press. Available at

http://www.odbms.org/download/027.01%20Zyl%20Comparing%20the

%20Performance%20of%20Object%20Databases%20and%20ORM%20Tools

%20September%202006.PDF

[11] L. Jounneau. Comparatif des performances des ORM PHP (29.11.2007), Online

blog post at http://ljouanneau.com/blog/post/2007/11/29/723-comparatif-des-

performances-des-orm-php

[1 2] S a k i l a d a t a b a s e d o c u m e n t a t i o n. A v a i l a b l e a t

http://dev.mysql.com/doc/sakila/en/sakila.html

28

Kahe PHP püsivate andmete salvestamise raamistike võrdlus
Bakalaureusetöö

Oliver Leisalu

Resümee
Antud töö eesmärk on anda ülevaade püsivate andmesalvestus raamistike ideest.

Tutvustada PHP jaoks valmistatud raamistikke ning näidata nende paremaid ja

halvemaid omadusi. Oma omadustelt olid teistest üle kaks raamistiku: Doctrine ja

DomAr. Edasistes võrdlustes kasutatigi neid kahte.

Võrdlemiseks koostati võrdlustabel, mis koosnes nii funktsionaalsetest omadustest kui

ka mittefunktsionaalsetest. Võrdluse tulemusest selgus, et Doctrine eelis on põhjalik

dokumentatsioon, palju lisavõimalusi ja aktiivne kasutajaskond.

Teise etapina testiti jõudlust kahe tähtsa omaduse jaoks: objektipuu läbimine ja

andmebaasi päringud. Jõudlustestidest selgus, et DomAr on konkurendist oluliselt

kiirem.

Lisaks analüüsiti nende raamistike kasutamise mugavust ja funktsionaalsust. Selleks

loodi olemasoleva andmebaasi peale toimiv objekti mudel. Loodud rakendust võrreldi

erinevatest aspektidest, milleks oli programmeerimiseks vajalik töö hulk ja koodi ridade

arv. Analüüsist selgus, et nii töö hulk kui ka koodi ridade arv on mõlemas raamistikus

enam-vähem võrdsed. Probleeme oli DomAr raamistikuga, mis nõudis rangemat

andmebaasi struktuuri ja seetõttu oli olemasoleva andmebaasi peale mudeli loomine

komplitseeritud. Lahenduseks muudeti andmebaasi struktuuri.

Antud töö võimalik edasiarendus on koostada uued võrdlustestid, kasutades mõnda

üldtuntud püsivate andmete salvestamise raamistike testimissüsteemi. Lisaks oleks

oodatud uute raamistike lisamine võrdlusesse.

29

