
Using Language-Oriented
Programming – a Case Study

Margus Freudenthal
Cybernetica / University of Tartu

Our Situation

We are working on Customs Engine
Customs information system
Processes customs documents
• Import and export declarations
• TIR carnets
• Export reports
• Manifests
• Warehousing notices
• etc.

Customs Engine

Each document typically represents some kind
of movement of goods
Modular architecture: each module processes
one type of document
Modules communicate with each other and
their EU counterparts
Modules are based on common platform
• Reusable components
• Framework and reference architecture

Architectural Requirements

Set of similar modules sharing common
platform
• Platform development costs divided among

modules
• Need for customizable components

Complex business logic
• Rules for verifying documents
• Document state machines
• Rules for processing and sending messages
• Having clear overview of code is important

Architectural Requirements

Changing business logic
• Iterative development
• Changing regulations

Everything must run in JVM and J2EE

What to Do?

We used language-oriented programming
The general idea is to create a domain-specific
language and write a program in that language

Language implementation

Solution

Domain-specific language

Language-Oriented
Programming

Separation of concerns
• Technical decisions in language implementation
• Functional decisions in solution

High productivity
• DSL has high level of abstraction and fits the

problem domain

Good maintainability
• Solution is written in high-level language
• Solution and language implementation can be

evolved separately

Our Approach

Platform components can be configured using
DSLs
Big, heavyweight DSLs created for important
parts
Templating used for smaller, less important
languages

Heavyweight DSL: Burula

Short for business rule language
Used to specify document verification rules

predicate is-unpacked-goods

 kindOfPackages is ('NE', 'NF', 'NG')

packages must have numberOfPieces

 when is-unpacked-goods

 error "When goods are unpacked, number

 of pieces must be present"

Burula

predicate is-sea-transport

 transportModeAtBorder is ('1', '8')

const ship-number '[0-9]{7,8}'

idOfTransport idOfTransport is like ship-number

 when is-sea-transport

 error "Identity of transport vehicle

 must be IMO ship number"

Burula: Features

(hopefully) Intuitive syntax
Simple use of document fields
Implicit iteration
Other implicit „magic”
• For example, recording location of the error

Burula: Implementation

Compiled to Java bytecode
Compiled programs are stored in database
and loaded when needed
Older versions of programs are retained for
use with old documents
Burula programs can call Java methods

Lightweight Languages

We use templating system

Templater

Template

Input
file

.xml
file

.java
file

Templater

Input files use S-expressions as syntax
Templater can generate Java or XML files

(message jms.complex-exit-notificaton-receiver

ee.cyber.complex.bean.ExitNotificationReceiverBean)

(local

ee.cyber.complex.service.RemoteDeclarationService

ee.cyber.complex.bean.RemoteDeclarationServiceBO

(transaction RequiresNew)

(anonymous-user))

(remote ee.cyber.coal.client.SadIntegrationService

 ee.cyber.complex.bean.SadIntegrationServiceBO)

Evaluation

The modules are very flexible and easy to
change
• Creating new modules is more about describing the

functionality in languages provided by the platform

Analysts' work is different
• Instead of documents, they write programs
• Very short round-trip – immediate feedback to

analyst
• Using formal language for requirements exposes

problems early

Evaluation

Programmers have less routine tasks
• e.g. less UI tweaking
• Need to fill gaps left by the DSLs

Because analysts write directly in formal
language, there tends to be less
documentation
• „Why?” is not documented
• Formal rules not readable by users

Conclusion

Our overall experience with language-oriented
programming is positive
I would recommend it when
• There is lot of complex business logic
• Project is big enough to justify building languages
• There are good people and tools

We shape our tools and
thereafter our tools shape us.

 -- Marshall McLuhan

	PowerPoint Presentation
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18

